标题: 结合标准化切割与色彩空间分布特征于自动化醒目性前景选取
A Combined Normalized Cuts and Color Spatial Distribution Feature for Automatic Salient Foreground Extraction
作者: 蔡柏勋
Tsai, Po-Hsun
周志成
Jou, Chi-Cheng
电控工程研究所
关键字: 影像切割;自动化前景选取;标准化切割;色彩空间分布特征;Image Segmentation;Automatic Foreground Extraction;Normalized Cuts;Color Spatial Distribution Feature
公开日期: 2015
摘要: 影像切割在电脑视觉与影像处理中都是一个重要且具挑战性的问题。前景选取是影像切割中的一种,前景选取的目的是将一张图片分成前景及背景两个区域,前景的定义是一张图片中离观察者最近的部分场景和最醒目的位置。这种技术可以运用到物件侦测和物件辨识当中。现今已经有不少关于前景选取的方法,但是这些方法通常需要使用者的一些互动才能得出结果,使得使用上不方便。不同于先前的方法,在本论文中我们提出一个自动化前景选取的方法,以改善使用上的便利性。此方法利用了标准化切割和色彩空间分布特征。色彩空间分布特征可以标出醒目性区域所在的位置。因为醒目性区域符合前景的定义,我们可以藉着色彩空间分布特征来找出前景可能所在的位置。标准化切割藉由计算像素间的相似性和设定切割数目将影像分割成数个区域,这些区域未必已将前景和背景分割开来,我们提出将标准化切割和色彩空间分布特征结合以改善此问题。另外,本文藉着色彩空间分布特征提出两个能自动化地在标准化切割区域中找到并合并属于前景区域的方法,分别为门槛值法和卡方距离法。实验结果证明了本文提出的方法不仅不需要使用者介入且结果也相当不错。
Image segmentation is an essential and challenging problem in computer vision and image processing. Foreground extraction is one of image segmentation that separates an image into two regions, which are foreground and background. The definition of the foreground is the portion of a scene nearest to the viewer and a prominent position within the image. It can be used in object detection and object recognition. Recently, a lot of methods have been proposed for foreground extraction. However, the procedures of those methods need some interactions of users. It makes those methods inconvenient for users. Unlike previous methods, in this thesis, we propose a novel method for automatic foreground extraction. It uses normalized cuts and color spatial distribution feature. Color spatial distribution feature can indicate the position of the salient regions. Because the salient regions satisfy the definition of the foreground, we can find the position of the foreground by color spatial distribution feature. Normalized cuts can partition an image into several regions by calculating the similarity between pixels and setting the number of
cutting. These split regions haven’t always separated foreground from background. We combine normalized cuts and color spatial distribution feature to overcome the problem. This thesis propose two methods to automatically find and merge the split regions of foreground among all the split regions of normalized cuts by color spatial distribution feature. These two methods are called ”thresholding-method” and ”chi-squared-distancemethod”.
The experiment results show that the proposed methods do not need user interaction and perform well.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070260068
http://hdl.handle.net/11536/127716
显示于类别:Thesis