完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Ying-Daren_US
dc.contributor.authorLai, Yuan-Chengen_US
dc.contributor.authorLu, Chun-Nanen_US
dc.contributor.authorHsu, Peng-Kaien_US
dc.contributor.authorLee, Chia-Yinen_US
dc.date.accessioned2019-04-03T06:38:47Z-
dc.date.available2019-04-03T06:38:47Z-
dc.date.issued2015-07-25en_US
dc.identifier.issn1939-0114en_US
dc.identifier.urihttp://dx.doi.org/10.1002/sec.1148en_US
dc.identifier.urihttp://hdl.handle.net/11536/127857-
dc.description.abstractTo improve both accuracy and efficiency in detecting known and even unknown malware, we propose a three-phase behavior-based malware detection and classification approach, with a faster detector in the first phase to filter most samples, a slower detector in the second phase to observe remaining ambiguous samples, and then a classifier in the third phase to recognize their malware type. The faster detector executes programs in a sandbox to extract representative behaviors fed into a trained artificial neural network to evaluate their maliciousness, whereas the slower detector extracts and matches the LCSs of system call sequences fed into a trained Bayesian model to calculate their maliciousness. In the third phase, we define malware behavior vectors and calculate the cosine similarity to classify the malware. The experimental results show that the hybrid two-phase detection scheme outperforms the one-phase schemes and achieves 3.6% in false negative and 6.8% in false positive. The third-phase classifier also distinguishes the known-type malware with an accuracy of 85.8%. Copyright (c) 2015 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectmalware detectionen_US
dc.subjectmalware classificationen_US
dc.subjectbehavior analysisen_US
dc.subjectsandboxen_US
dc.subjectsystem callen_US
dc.titleThree-phase behavior-based detection and classification of known and unknown malwareen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/sec.1148en_US
dc.identifier.journalSECURITY AND COMMUNICATION NETWORKSen_US
dc.citation.volume8en_US
dc.citation.issue11en_US
dc.citation.spage2004en_US
dc.citation.epage2015en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000356393500004en_US
dc.citation.woscount6en_US
顯示於類別:期刊論文


文件中的檔案:

  1. f237e4d0fcd7838ec038aefccbf81ea1.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。