完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSun, Edward W.en_US
dc.contributor.authorChen, Yi-Tingen_US
dc.contributor.authorYu, Min-Tehen_US
dc.date.accessioned2015-12-02T02:59:10Z-
dc.date.available2015-12-02T02:59:10Z-
dc.date.issued2015-07-01en_US
dc.identifier.issn0925-5273en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijpe.2014.12.033en_US
dc.identifier.urihttp://hdl.handle.net/11536/127879-
dc.description.abstractUsing big financial data for the price dynamics of U.S. equities, we investigate the impact that market microstructure noise has on modeling volatility of the returns. Based on wavelet transforms (DWT and MODWT) for decomposing the systematic pattern and noise, we propose a new wavelet-based methodology (named GOWDA, i.e., the generalized optimal wavelet decomposition algorithm) that allows us to deconstruct price series into the true efficient price and microstructure noise, particularly for the noise that induces the phase transition behaviors. This approach optimally determines the wavelet function, level of decomposition, and threshold rule by using a multivariate score function that minimizes the overall approximation error in data reconstruction. The data decomposition method enables us to estimate and forecast the volatility in a more efficient way than the traditional methods proposed in the literature. Through the proposed method we illustrate our simulation and empirical results of improving the estimation and forecasting performance. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBig financial dataen_US
dc.subjectDWTen_US
dc.subjectHigh-frequency dataen_US
dc.subjectMODWTen_US
dc.subjectWaveleten_US
dc.titleGeneralized optimal wavelet decomposing algorithm for big financial dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijpe.2014.12.033en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF PRODUCTION ECONOMICSen_US
dc.citation.volume165en_US
dc.citation.spage194en_US
dc.citation.epage214en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000356110400020en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文