Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuang, Pingen_US
dc.contributor.authorHsieh, Mei-Lien_US
dc.contributor.authorLin, Shawn-Yuen_US
dc.date.accessioned2015-12-02T02:59:11Z-
dc.date.available2015-12-02T02:59:11Z-
dc.date.issued2015-06-07en_US
dc.identifier.issn0021-8979en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.4922292en_US
dc.identifier.urihttp://hdl.handle.net/11536/127895-
dc.description.abstractIn this paper, we proposed and realized 3D photonic nanostructures consisting of ultra- thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad- angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of similar to 95% for 400-620 nm over a wide angular acceptance of theta = 0 degrees - 60 degrees. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of > 95% for lambda = 400-870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie- Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle theta(CB) similar to 153 degrees. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications. (C) 2015 AIP Publishing LLC.en_US
dc.language.isoen_USen_US
dc.titleIntegrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicityen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.4922292en_US
dc.identifier.journalJOURNAL OF APPLIED PHYSICSen_US
dc.citation.volume117en_US
dc.citation.issue21en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000355925600069en_US
dc.citation.woscount0en_US
Appears in Collections:Articles