Full metadata record
DC FieldValueLanguage
dc.contributor.authorSrinivasadesikan, V.en_US
dc.contributor.authorRaghunath, P.en_US
dc.contributor.authorLin, M. C.en_US
dc.date.accessioned2015-12-02T02:59:13Z-
dc.date.available2015-12-02T02:59:13Z-
dc.date.issued2015-06-01en_US
dc.identifier.issn1610-2940en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00894-015-2686-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/127920-
dc.description.abstractLithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128: 11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097x7.655 angstrom(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximumof 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H-2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H-2 co-adsorbed on the lithiated surfaces; the maximum H-2 adsorption on the 9LiTiO(2)(a) surface was estimated to be only 0.32 wt% under 100 atm H-2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.en_US
dc.language.isoen_USen_US
dc.subjectAnataseen_US
dc.subjectDFT plus Uen_US
dc.subjectHydrogen storageen_US
dc.subjectLithiationen_US
dc.subjectTiO2(101)en_US
dc.subjectVASPen_US
dc.titleQuantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogenen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00894-015-2686-1en_US
dc.identifier.journalJOURNAL OF MOLECULAR MODELINGen_US
dc.citation.volume21en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000355953200021en_US
dc.citation.woscount0en_US
Appears in Collections:Articles