完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Li-Gangen_US
dc.contributor.authorVandewalle, Joosen_US
dc.contributor.authorLiang, Yew-Wenen_US
dc.date.accessioned2015-12-02T02:59:16Z-
dc.date.available2015-12-02T02:59:16Z-
dc.date.issued2015-09-01en_US
dc.identifier.issn0005-1098en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.automatica.2015.06.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/127979-
dc.description.abstractRecently, the easy-to-implement state-dependent Riccati equation (SDRE) strategy has been shown effective for numerous practical applications. Since being similar to SDRE, the newly emerged state-dependent differential Riccati equation (SDDRE) approach shares most of the benefits of SORE, and exhibits interesting potential from both the analytical and practical viewpoints. By generalizing previous works to the general-order nonlinear time-variant systems, we try to resolve several problems related to the design flexibility (the infinitely many candidates of the state-dependent coefficient matrix), since they appear at the beginning of the implementation of both schemes. Finally, we demonstrate the proposed scheme via examples. (C) 2015 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNonlinear control systemen_US
dc.subjectState-dependent (differential) Riccati equationen_US
dc.subjectApplication of nonlinear analysis and designen_US
dc.subjectState-dependent coefficient matrixen_US
dc.titleAnalytical representation of the state-dependent coefficients in the SDRE/SDDRE scheme for multivariable systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.automatica.2015.06.015en_US
dc.identifier.journalAUTOMATICAen_US
dc.citation.volume59en_US
dc.citation.spage106en_US
dc.citation.epage111en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000359028700013en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文