標題: High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: data fusion by spectral combination
作者: Shih, Hsuan-Chang
Hwang, Cheinway
Barriot, Jean-Pierre
Mouyen, Maxime
Correia, Pascal
Lequeux, Didier
Sichoix, Lydie
土木工程學系
Department of Civil Engineering
關鍵字: French Polynesia;Geoid;Gravity anomaly;Moorea;Least-squares collocation;Tahiti
公開日期: 5-八月-2015
摘要: For the first time, we carry out an airborne gravity survey and we collect new land gravity data over the islands of Tahiti and Moorea in French Polynesia located in the South Pacific Ocean. The new land gravity data are registered with GPS-derived coordinates, network-adjusted and outlier-edited, resulting in a mean standard error of 17 mu Gal. A crossover analysis of the airborne gravity data indicates a mean gravity accuracy of 1.7 mGal. New marine gravity around the two islands is derived from Geosat/ GM, ERS-1/GM, Jason-1/GM, and Cryosat-2 altimeter data. A new 1-s digital topography model is constructed and is used to compute the topographic gravitational effects. To use EGM08 over Tahiti and Moorea, the optimal degree of spherical harmonic expansion is 1500. The fusion of the gravity datasets is made by the band-limited least-squares collocation, which best integrates datasets of different accuracies and spatial resolutions. The new high-resolution gravity and geoid grids are constructed on a 9-s grid. Assessments of the grids by measurements of ground gravity and geometric geoidal height result in RMS differences of 0.9 mGal and 0.4 cm, respectively. The geoid model allows 1-cm orthometric height determination by GPS and Lidar and yields a consistent height datum for Tahiti and Moorea. The new Bouguer anomalies show gravity highs and lows in the centers and land-sea zones of the two islands, allowing further studies of the density structure and volcanism in the region.
URI: http://dx.doi.org/10.1186/s40623-015-0297-9
http://hdl.handle.net/11536/127992
ISSN: 1880-5981
DOI: 10.1186/s40623-015-0297-9
期刊: EARTH PLANETS AND SPACE
Volume: 67
起始頁: 0
結束頁: 0
顯示於類別:期刊論文


文件中的檔案:

  1. 235bacc24d615b83cf333d353a6e2180.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。