Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorLo, Yuan-Hsunen_US
dc.date.accessioned2015-12-02T02:59:20Z-
dc.date.available2015-12-02T02:59:20Z-
dc.date.issued2015-07-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/128066-
dc.description.abstractIn this paper, we first prove that if the edges of K-2m are properly colored by 2m - 1 colors in such a way that any two colors induce a 2-factor of which each component is a 4-cycle, then K2m, can be decomposed into m isomorphic multicolored spanning trees. Consequently, we show that there exist three disjoint isomorphic multicolored spanning trees in any properly (2m-1)-edge-colored K-2m for m >= 14.en_US
dc.language.isoen_USen_US
dc.subjectedge-coloringen_US
dc.subjectcomplete graphen_US
dc.subjectmulticolored spanning treesen_US
dc.titleMulticolored Isomorphic Spanning Trees in Complete Graphsen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume122en_US
dc.citation.spage423en_US
dc.citation.epage430en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000357759600030en_US
dc.citation.woscount0en_US
Appears in Collections:Articles