完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Yu-peien_US
dc.contributor.authorPan, Yeh-jongen_US
dc.contributor.authorWeng, Chih-wenen_US
dc.date.accessioned2015-12-02T02:59:20Z-
dc.date.available2015-12-02T02:59:20Z-
dc.date.issued2015-06-03en_US
dc.identifier.issn1077-8926en_US
dc.identifier.urihttp://hdl.handle.net/11536/128072-
dc.description.abstractLet Gamma denote a distance-regular graph with diameter D >= 3 and intersection numbers a(1) = 0, a(2) not equal 0, and c(2) = 1. We show a connection between the d-bounded property and the nonexistence of parallelograms of any length up to d + 1. Assume further that Gamma is with classical parameters (D, b, alpha, beta), Pan and Weng (2009) showed that (b, alpha, beta) = (-2, 2, ((-2)(D+1) -1)/3). Under the assumption D >= 4, we exclude this class of graphs by an application of the above connection.en_US
dc.language.isoen_USen_US
dc.subjectDistance-regular graphen_US
dc.subjectclassical parametersen_US
dc.subjectparallelogramen_US
dc.subjectstrongly closed subgraphen_US
dc.subjectD-boundeden_US
dc.titleNonexistence of a Class of Distance-regular Graphsen_US
dc.typeArticleen_US
dc.identifier.journalELECTRONIC JOURNAL OF COMBINATORICSen_US
dc.citation.volume22en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000358874000001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文