完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, Yu-pei | en_US |
dc.contributor.author | Pan, Yeh-jong | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2015-12-02T02:59:20Z | - |
dc.date.available | 2015-12-02T02:59:20Z | - |
dc.date.issued | 2015-06-03 | en_US |
dc.identifier.issn | 1077-8926 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/128072 | - |
dc.description.abstract | Let Gamma denote a distance-regular graph with diameter D >= 3 and intersection numbers a(1) = 0, a(2) not equal 0, and c(2) = 1. We show a connection between the d-bounded property and the nonexistence of parallelograms of any length up to d + 1. Assume further that Gamma is with classical parameters (D, b, alpha, beta), Pan and Weng (2009) showed that (b, alpha, beta) = (-2, 2, ((-2)(D+1) -1)/3). Under the assumption D >= 4, we exclude this class of graphs by an application of the above connection. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Distance-regular graph | en_US |
dc.subject | classical parameters | en_US |
dc.subject | parallelogram | en_US |
dc.subject | strongly closed subgraph | en_US |
dc.subject | D-bounded | en_US |
dc.title | Nonexistence of a Class of Distance-regular Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.journal | ELECTRONIC JOURNAL OF COMBINATORICS | en_US |
dc.citation.volume | 22 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000358874000001 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |