完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHo, SJen_US
dc.contributor.authorKu, WYen_US
dc.contributor.authorJou, JWen_US
dc.contributor.authorHung, MHen_US
dc.contributor.authorHo, SYen_US
dc.date.accessioned2014-12-08T15:17:39Z-
dc.date.available2014-12-08T15:17:39Z-
dc.date.issued2006en_US
dc.identifier.isbn3-540-33206-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/12807-
dc.description.abstractIn this paper, we proposes a novel intelligent multi-objective particle swarm optimization (IMOPSO) to solve multi-objective optimization problems. High performance of IMOPSO mainly arises from two parts: one is using generalized Pareto-based scale-independent fitness function (GPSISF) can efficiently given all candidate solutions a score, and then decided candidate solutions level. The other one is replacing the conventional particle move process of PSO with an intelligent move mechanism (IMM) based on orthogonal experimental design to enhance the search ability. IMM can evenly sample and analyze from the best experience of an individual particle and group particles by using a systematic reasoning method, and then efficiently generate a good candidate solution for the next move of the particle. Some benchmark functions are used to evaluate the performance of IMOPSO, and compared with some existing multi-objective evolution algorithms. According to experimental results and analysis, they show that IMOPSO performs well.en_US
dc.language.isoen_USen_US
dc.titleIntelligent particle swarm optimization in multi-objective problemsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGSen_US
dc.citation.volume3918en_US
dc.citation.spage790en_US
dc.citation.epage800en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000237249600092-
顯示於類別:會議論文