Full metadata record
DC FieldValueLanguage
dc.contributor.authorKang, Chen-Fangen_US
dc.contributor.authorKuo, Wei-Chengen_US
dc.contributor.authorBao, Wenzhongen_US
dc.contributor.authorHo, Chih-Hsiangen_US
dc.contributor.authorHuang, Chun-Weien_US
dc.contributor.authorWu, Wen-Weien_US
dc.contributor.authorChu, Ying-Haoen_US
dc.contributor.authorJuang, Jenh-Yihen_US
dc.contributor.authorTseng, Snow H.en_US
dc.contributor.authorHu, Liangbingen_US
dc.contributor.authorHe, Jr-Hauen_US
dc.date.accessioned2015-12-02T02:59:21Z-
dc.date.available2015-12-02T02:59:21Z-
dc.date.issued2015-04-01en_US
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.nanoen.2015.02.033en_US
dc.identifier.urihttp://hdl.handle.net/11536/128090-
dc.description.abstractResistive random access memory (RRAM) is one of the most promising candidates as a next generation nonvolatile memory (NVM), owing to its superior scalability, low power consumption and high speed. From the materials science point of view, to explore optimal RRAM materials is still essential for practical application. In this work, a new material (Ni, Mn)0 (BMO) is investigated and several key performance characteristics of Pt/ BMO/Pt structured device, including switching performance, retention and endurance, are examined in details. Furthermore, it has been confirmed by high-resolution transmission electron microscopy that the underlying switching mechanism is attributed to formation and disruption of metallic conducting nanofilaments (CNFs). More importantly, the power dissipation for each CNF is as low as 3.8/20 fJ for set/reset process, and a realization of cross-bar structure memory cell is demonstrated to prove the downscaling ability of proposed RRAM. These distinctive properties have important implications for understanding switching mechanisms and implementing ultralow power-dissipation RRAM based on BMO. (C) 2015 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNanofilamenten_US
dc.subjectOperating energyen_US
dc.subjectUttratow poweren_US
dc.subjectMemoryen_US
dc.subjectComplex metal oxideen_US
dc.titleSelf-formed conductive nanofilaments in (Bi, Mn)O-x for ultralow-power memory devicesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.nanoen.2015.02.033en_US
dc.identifier.journalNANO ENERGYen_US
dc.citation.volume13en_US
dc.citation.spage283en_US
dc.citation.epage290en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000358414700029en_US
dc.citation.woscount1en_US
Appears in Collections:Articles