完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Hsuan-Weien_US
dc.contributor.authorLin, Fan-Chengen_US
dc.contributor.authorLin, Shi-Weien_US
dc.contributor.authorWu, Jau-Yangen_US
dc.contributor.authorChou, Bo-Tsunen_US
dc.contributor.authorLai, Kuang-Jenen_US
dc.contributor.authorLin, Sheng-Dien_US
dc.contributor.authorHuang, Jer-Shingen_US
dc.date.accessioned2015-12-02T02:59:21Z-
dc.date.available2015-12-02T02:59:21Z-
dc.date.issued2015-04-01en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://dx.doi.org/10.1021/nn5070887en_US
dc.identifier.urihttp://hdl.handle.net/11536/128091-
dc.description.abstractAluminum, as a metallic material for plasmonics, is of great interest because it extends the applications of surface plasmon resonance into the ultraviolet (UV) region and is superior to noble metals in natural abundance, cost, and compatibility with modern semiconductor fabrication processes. Ultrasmooth single-crystalline metallic films are beneficial for the fabrication of high-definition plasmonic nanostructures, especially complex integrated nanocircuits. The absence of surface corrugation and crystal boundaries also guarantees superior optical properties and applications in nanolasers. Here, we present UV to near-infrared plasmonic resonance of single-crystalline aluminum nanoslits and nanoholes. The high-definition nanostructures are fabricated with focused ion-beam milling into an ultrasmooth single-crystalline aluminum film grown on a semiconducting GaAs substrate with a molecular beam epitaxy method. The single-crystalline aluminum film shows improved reflectivity and reduced two-photon photoluminescence (TPPL) due to the ultrasmooth surface. Both linear scattering and nonlinear TPPL are studied in detail. The nanoslit arrays show clear Fano-like resonance, and the nanoholes are found to support both photonic modes and localized surface plasmon resonance. We also found that TPPL generation is more efficient when the excitation polarization is parallel rather than perpendicular to the edge of the aluminum film. Such a counterintuitive phenomenon is attributed to the high refractive index of the GaAs substrate. We show that the polarization of TPPL from aluminum preserves the excitation polarization and is independent of the crystal orientation of the film or substrate. Our study gains insight into the optical property of aluminum nanostructures on a high-index semiconducting GaAs substrate and illustrates a practical route to implement plasmonic devices onto semiconductors for future hybrid nanodevices.en_US
dc.language.isoen_USen_US
dc.subjectsurface plasmon resonanceen_US
dc.subjectultraviolet plasmonicsen_US
dc.subjectmolecular beam epitaxyen_US
dc.subjectsingle-crystalline aluminumen_US
dc.subjectsemiconducting substrateen_US
dc.subjectphotoluminescenceen_US
dc.subjectnanoholesen_US
dc.subjectnanoslitsen_US
dc.titleSingle-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/nn5070887en_US
dc.identifier.journalACS NANOen_US
dc.citation.spage3875en_US
dc.citation.epage3886en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000353867000049en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文