Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Gerard J.en_US
dc.contributor.authorChen, Sheng-Huaen_US
dc.contributor.authorHsu, Chi-Yunen_US
dc.contributor.authorHung, Chia-Manen_US
dc.contributor.authorLai, Huei-Lingen_US
dc.date.accessioned2015-12-02T02:59:22Z-
dc.date.available2015-12-02T02:59:22Z-
dc.date.issued2015-12-06en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2015.04.031en_US
dc.identifier.urihttp://hdl.handle.net/11536/128116-
dc.description.abstractA strong edge-coloring of a graph is a function that assigns to each edge a color such that two edges within distance two apart receive different colors. The strong chromatic index of a graph is the minimum number of colors used in a strong edge-coloring. This paper determines strong chromatic indices of cacti, which are graphs whose blocks are cycles or complete graphs of two vertices. The proof is by means of jellyfish graphs. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectStrong edge-coloringen_US
dc.subjectStrong chromatic indexen_US
dc.subjectCycleen_US
dc.subjectCactusen_US
dc.subjectBlocken_US
dc.titleStrong edge-coloring for jellyfish graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2015.04.031en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume338en_US
dc.citation.issue12en_US
dc.citation.spage2348en_US
dc.citation.epage2355en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000359955700021en_US
dc.citation.woscount0en_US
Appears in Collections:Articles