Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung, Chiao-Fangen_US
dc.contributor.authorChung, Tien-Kanen_US
dc.contributor.authorYeh, Po-Chenen_US
dc.contributor.authorChen, Chin-Chungen_US
dc.contributor.authorWang, Chieh-Minen_US
dc.contributor.authorLin, Shin-Hungen_US
dc.date.accessioned2015-12-02T02:59:23Z-
dc.date.available2015-12-02T02:59:23Z-
dc.date.issued2015-10-01en_US
dc.identifier.issn1530-437Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/JSEN.2015.2444993en_US
dc.identifier.urihttp://hdl.handle.net/11536/128129-
dc.description.abstractIn this paper, we demonstrate a novel robust miniature three-axis vibrational energy-harvester using a mechanical-piezoelectric configuration. Using the configuration, the harvester employs Newton\'s law of inertia and the piezoelectric effect to convert either the x-axis or y-axis in-plane and z-axis out-of-plane ambient vibrations into piezoelectric voltage-responses. Under the x-axis vibration (sine-wave, 75 Hz, 3.5 g), our modeled, finite-element analyzed/simulated, and experimental root mean square voltage-response with power-outputs of the harvester (stimulated in resonant with the optimum load) is 525.36 mV with 0.477 mu W, 516.51 mV with 0.461 mu W, and 548 mV with 0.519 mu W, respectively. Under the z-axis vibration (sine-wave, 95 Hz, 3.8 g), the modeled, finite-element analyzed/simulated, and experimental root mean square voltage-response with power-output of the harvester (stimulated in resonant with the optimum load) is 157.35 mV with 0.066 mu W, 170.25 mV with 0.0772 mu W, and 168 mV with 0.075 mu W, respectively. These show that not only both of our modeling and finite-element analysis/simulation can successfully predict the experimental results, but also our harvester is capable of harnessing three-axial ambient vibrations. Moreover, through the piezoelectric lead-zirconate-titanate-connected-in-series approach, the voltage and power outputs are increased. According to these achievements, we believe that our harvester would be an important design reference in industry for future development of microfabrication-based (MEMS-based) three-axial piezoelectric energy harvesters and accelerometers.en_US
dc.language.isoen_USen_US
dc.subjectEnergy harvesteren_US
dc.subject3-axisen_US
dc.subject3-dimeniosnalen_US
dc.subjectpiezoelectricen_US
dc.subjectmechanicalen_US
dc.subjectvibrationen_US
dc.titleA Miniature Mechanical-Piezoelectric-Configured Three-Axis Vibrational Energy Harvesteren_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSEN.2015.2444993en_US
dc.identifier.journalIEEE SENSORS JOURNALen_US
dc.citation.volume15en_US
dc.citation.issue10en_US
dc.citation.spage5601en_US
dc.citation.epage5615en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000360072500032en_US
dc.citation.woscount0en_US
Appears in Collections:Articles