Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tung, Ching-Wei | en_US |
dc.contributor.author | Hsu, Ying-Ya | en_US |
dc.contributor.author | Shen, Yen-Ping | en_US |
dc.contributor.author | Zheng, Yixin | en_US |
dc.contributor.author | Chan, Ting-Shan | en_US |
dc.contributor.author | Sheu, Hwo-Shuenn | en_US |
dc.contributor.author | Cheng, Yuan-Chung | en_US |
dc.contributor.author | Chen, Hao Ming | en_US |
dc.date.accessioned | 2019-04-03T06:35:56Z | - |
dc.date.available | 2019-04-03T06:35:56Z | - |
dc.date.issued | 2015-08-01 | en_US |
dc.identifier.issn | 2041-1723 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1038/ncomms9106 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/128165 | - |
dc.description.abstract | Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for 41,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1038/ncomms9106 | en_US |
dc.identifier.journal | NATURE COMMUNICATIONS | en_US |
dc.citation.volume | 6 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 加速器光源科技與應用學位學程 | zh_TW |
dc.contributor.department | Master and Ph.D. Program for Science and Technology of Accelrrator Light Source | en_US |
dc.identifier.wosnumber | WOS:000360355200001 | en_US |
dc.citation.woscount | 121 | en_US |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.