完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Jinn-Moonen_US
dc.contributor.authorTung, Chi-Huaen_US
dc.date.accessioned2014-12-08T15:17:40Z-
dc.date.available2014-12-08T15:17:40Z-
dc.date.issued2006en_US
dc.identifier.issn0305-1048en_US
dc.identifier.urihttp://hdl.handle.net/11536/12817-
dc.identifier.urihttp://dx.doi.org/10.1093/nar/gkl395en_US
dc.description.abstractAs more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods.en_US
dc.language.isoen_USen_US
dc.titleProtein structure database search and evolutionary classificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/nar/gkl395en_US
dc.identifier.journalNUCLEIC ACIDS RESEARCHen_US
dc.citation.volume34en_US
dc.citation.issue13en_US
dc.citation.spage3646en_US
dc.citation.epage3659en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000240583100015-
dc.citation.woscount49-
顯示於類別:期刊論文


文件中的檔案:

  1. 000240583100015.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。