完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPan, Jia-Chiunen_US
dc.contributor.authorLiu, Chih-Minen_US
dc.contributor.authorHwu, Hai-Gwoen_US
dc.contributor.authorHuang, Guan-Huaen_US
dc.date.accessioned2015-12-02T02:59:40Z-
dc.date.available2015-12-02T02:59:40Z-
dc.date.issued2015-10-12en_US
dc.identifier.issn1932-6203en_US
dc.identifier.urihttp://dx.doi.org/10.1371/journal.pone.0138899en_US
dc.identifier.urihttp://hdl.handle.net/11536/128418-
dc.description.abstractThe label switching problem occurs as a result of the nonidentifiability of posterior distribution over various permutations of component labels when using Bayesian approach to estimate parameters in mixture models. In the cases where the number of components is fixed and known, we propose a relabelling algorithm, an allocation variable-based (denoted by AVP) probabilistic relabelling approach, to deal with label switching problem. We establish a model for the posterior distribution of allocation variables with label switching phenomenon. The AVP algorithm stochastically relabel the posterior samples according to the posterior probabilities of the established model. Some existing deterministic and other probabilistic algorithms are compared with AVP algorithm in simulation studies, and the success of the proposed approach is demonstrated in simulation studies and a real dataset.en_US
dc.language.isoen_USen_US
dc.titleAllocation Variable-Based Probabilistic Algorithm to Deal with Label Switching Problem in Bayesian Mixture Modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1371/journal.pone.0138899en_US
dc.identifier.journalPLOS ONEen_US
dc.citation.volume10en_US
dc.citation.issue10en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000362961100008en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文