標題: | LIMIT BEHAVIOR OF MAXIMA IN GEOMETRIC WORDS REPRESENTING SET PARTITIONS |
作者: | Fuchs, Michael Javanian, Mehri 應用數學系 Department of Applied Mathematics |
關鍵字: | Geometric words;restricted growth property;set partitions;moments;limit laws |
公開日期: | 1-Oct-2015 |
摘要: | We consider geometric words omega(1) ... omega(n) with letters satisfying the restricted growth property omega(k) <= d max{omega(0), ..., omega(k-1)}, where omega(0) := 0 and d >= 1. For d = 1 these words are in 1-to-1 correspondence with set partitions and for this case, we show that the number of left-to-right maxima (suitable centered) does not converge to a fixed limit law as n tends to infinity. This becomes wrong for d >= 2, for which we prove that convergence does occur and the limit law is normal. Moreover, we also consider related quantities such as the value of the maximal letter and the number of maximal letters and show again non-convergence to a fixed limit law. |
URI: | http://dx.doi.org/10.2298/AADM150619013F http://hdl.handle.net/11536/128427 |
ISSN: | 1452-8630 |
DOI: | 10.2298/AADM150619013F |
期刊: | APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS |
起始頁: | 313 |
結束頁: | 331 |
Appears in Collections: | Articles |