完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorJavanian, Mehrien_US
dc.date.accessioned2015-12-02T02:59:40Z-
dc.date.available2015-12-02T02:59:40Z-
dc.date.issued2015-10-01en_US
dc.identifier.issn1452-8630en_US
dc.identifier.urihttp://dx.doi.org/10.2298/AADM150619013Fen_US
dc.identifier.urihttp://hdl.handle.net/11536/128427-
dc.description.abstractWe consider geometric words omega(1) ... omega(n) with letters satisfying the restricted growth property omega(k) <= d max{omega(0), ..., omega(k-1)}, where omega(0) := 0 and d >= 1. For d = 1 these words are in 1-to-1 correspondence with set partitions and for this case, we show that the number of left-to-right maxima (suitable centered) does not converge to a fixed limit law as n tends to infinity. This becomes wrong for d >= 2, for which we prove that convergence does occur and the limit law is normal. Moreover, we also consider related quantities such as the value of the maximal letter and the number of maximal letters and show again non-convergence to a fixed limit law.en_US
dc.language.isoen_USen_US
dc.subjectGeometric wordsen_US
dc.subjectrestricted growth propertyen_US
dc.subjectset partitionsen_US
dc.subjectmomentsen_US
dc.subjectlimit lawsen_US
dc.titleLIMIT BEHAVIOR OF MAXIMA IN GEOMETRIC WORDS REPRESENTING SET PARTITIONSen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/AADM150619013Fen_US
dc.identifier.journalAPPLICABLE ANALYSIS AND DISCRETE MATHEMATICSen_US
dc.citation.spage313en_US
dc.citation.epage331en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000363709500007en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文