Full metadata record
DC FieldValueLanguage
dc.contributor.authorStreloov, Evghenien_US
dc.contributor.authorBelianinov, Alexeien_US
dc.contributor.authorHsieh, Ying-Huien_US
dc.contributor.authorChu, Ying-Haoen_US
dc.contributor.authorKalinin, Sergei V.en_US
dc.date.accessioned2015-12-02T02:59:40Z-
dc.date.available2015-12-02T02:59:40Z-
dc.date.issued2015-10-01en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acs.nanolett.5b02472en_US
dc.identifier.urihttp://hdl.handle.net/11536/128434-
dc.description.abstractDevelopment of new generation electronic devices necessitates understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation of the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.en_US
dc.language.isoen_USen_US
dc.subjectBismuth ferriteen_US
dc.subjectcobalt ferriteen_US
dc.subjectoxide heterostructuresen_US
dc.subjectmultivariate analysisen_US
dc.subjectBayesian linear unmixing FORC-IVen_US
dc.titleConstraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructuresen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.nanolett.5b02472en_US
dc.identifier.journalNANO LETTERSen_US
dc.citation.volume15en_US
dc.citation.issue10en_US
dc.citation.spage6650en_US
dc.citation.epage6657en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000363003100054en_US
dc.citation.woscount0en_US
Appears in Collections:Articles