Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chuang, Wei-Yi | en_US |
dc.contributor.author | Chao, Paul C. -P. | en_US |
dc.contributor.author | Chen, Shin-Yuan | en_US |
dc.contributor.author | Tsai, Sheng-Tzung | en_US |
dc.contributor.author | Young, Kuu-Young | en_US |
dc.contributor.author | Ting, Ta-Wei | en_US |
dc.date.accessioned | 2015-12-02T02:59:41Z | - |
dc.date.available | 2015-12-02T02:59:41Z | - |
dc.date.issued | 2015-09-01 | en_US |
dc.identifier.issn | 0924-4247 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.sna.2015.06.016 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/128442 | - |
dc.description.abstract | Deep brain stimulation (DBS) in the subthalamic nucleus (STN) has been applied for advanced Parkinson\'s disease (PD). In clinical practices, monopolar configuration is often utilized based on clinical efficiency. Meanwhile, the volume of tissue activated (VTA) by DBS is estimated for controlling and/or limiting the stimulated region. However, side effects like dyskinesia and tremor were accompanied during stimulation. Most studies had found that bipolar stimulation is an alternative approach for side effects avoidance. The goal of this paper is to develop a quantified relationship of stimulation voltage from monopolar to bipolar configuration to improve neural stimulation. In this paper, an electromagnetic finite element model is first built for a patient-specific physiological brain model, which is established by magnetic resonance imaging (MRI) data. The model is then used for finite element analysis (PEA) to estimate VTA with varied electrode voltage in monopolar and bipolar configurations. With the goals to avoid side effects and achieve symptoms suppression, the stimulation voltage of bipolar configuration is successfully computerized based on the electromagnetic PEA simulations. Experiments are conducted successfully to validate simulation results. (C) 2015 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Deep brain stimulation (DBS) | en_US |
dc.subject | Volume of tissue activated (VTA) | en_US |
dc.subject | Side effects | en_US |
dc.subject | Stimulation configuration | en_US |
dc.subject | Magnetic resonance imaging (MRI) | en_US |
dc.subject | Finite element analysis (FEA) | en_US |
dc.title | Computing stimulation voltage in a bipolar electrode configuration to avoid side effects during deep brain stimulation | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.sna.2015.06.016 | en_US |
dc.identifier.journal | SENSORS AND ACTUATORS A-PHYSICAL | en_US |
dc.citation.volume | 233 | en_US |
dc.citation.epage | 14 | en_US |
dc.contributor.department | 電機工程學系 | zh_TW |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.identifier.wosnumber | WOS:000362856200002 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |