Full metadata record
DC FieldValueLanguage
dc.contributor.authorChoi, MDen_US
dc.contributor.authorWu, PYen_US
dc.date.accessioned2014-12-08T15:17:42Z-
dc.date.available2014-12-08T15:17:42Z-
dc.date.issued2006en_US
dc.identifier.issn0039-3223en_US
dc.identifier.urihttp://hdl.handle.net/11536/12850-
dc.identifier.urihttp://dx.doi.org/10.4064/sm173-1-5en_US
dc.description.abstractWe completely characterize the ranks of A - B and A(1/2) - B-1/2 for operators A and B on a Hilbert space satisfying A >= B >= 0. Namely, let l and m be nonnegative integers or infinity. Then l = rank(A - B) and m = rank(A(1/2) - B-1/2) for some operators A and B with A >= B >= 0 on a Hilbert space of dimension n (1 <= n <= infinity) if and only if l = m = 0 or 0 < l <= m <= n. In particular, this answers in the negative the question posed by C. Benhida whether for positive operators A and B the finiteness of rank(A - B) implies that of rank(A(1/2) - B-1/2). For two isometries, we give necessary and sufficient conditions in order that they be finite-rank perturbations of each other. One such condition says that, for isometries A and B, A - B has finite rank if and only if A = (I + F)B for some unitary operator I + F with finite-rank F. Another condition is in terms of the parts in the Wold-Lebesgue decompositions of the nonunitary isometries A and B.en_US
dc.language.isoen_USen_US
dc.subjectfinite-rank perturbationen_US
dc.subjectpositive operatoren_US
dc.subjectisometryen_US
dc.subjectWold-Lebesgue decompositionen_US
dc.titleFinite-rank perturbations of positive operators and isometriesen_US
dc.typeArticleen_US
dc.identifier.doi10.4064/sm173-1-5en_US
dc.identifier.journalSTUDIA MATHEMATICAen_US
dc.citation.volume173en_US
dc.citation.issue1en_US
dc.citation.spage73en_US
dc.citation.epage79en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000237153700005-
dc.citation.woscount3-
Appears in Collections:Articles