Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuan, Xiao-Wenen_US
dc.contributor.authorLee, Shou-Chungen_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.date.accessioned2015-12-02T03:00:54Z-
dc.date.available2015-12-02T03:00:54Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-1-4799-5705-7en_US
dc.identifier.issn1551-6245en_US
dc.identifier.urihttp://dx.doi.org/10.1109/MDM.2014.71en_US
dc.identifier.urihttp://hdl.handle.net/11536/128536-
dc.description.abstractIn this paper, we propose a framework to infer different people\'s activity from the view of both the geographical habit and temporal habit of user. Such a personal activity inference framework is a crucial prerequisite for intelligent user experience, and power management of smart phones. By analyzing the real activity log data, we extract 3 kinds of features: 1) The geographical feature captures the user\'s activity preference of places; 2) The temporal feature records the routine habit of user\'s activity; 3) The semantic feature obtained from location-based social network can be used as an activity reference of public opinion for each location. Finally, we hybrid the features to build a Semantic-based Activity Inference Model (SAIM). To evaluate our proposed framework SAIM, we compared it with the state-of-art methods over a real dataset. The experimental results show that our framework could accurately inference user\'s activity and each feature of the three has different inferring ability for different user.en_US
dc.language.isoen_USen_US
dc.subjectMobileen_US
dc.subjectActivity Inferenceen_US
dc.subjectLocationen_US
dc.titleExploring Location-Related Data on Smart Phones for Activity Inferenceen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/MDM.2014.71en_US
dc.identifier.journal2014 IEEE 15TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (IEEE MDM), VOL 2en_US
dc.citation.spage73en_US
dc.citation.epage78en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000358408300016en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper