完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Po-Mingen_US
dc.contributor.authorHsiao, Tzu-Chienen_US
dc.date.accessioned2015-12-02T03:00:55Z-
dc.date.available2015-12-02T03:00:55Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-1-4799-1488-3en_US
dc.identifier.issnen_US
dc.identifier.urihttp://hdl.handle.net/11536/128544-
dc.description.abstractAffective image classification is a task aims on classifying images based on their affective characteristics of inducing human emotions. This study achieves the task by using Learning Classifier System (LCS) and spatial-frequency features. The model built by using LCS achieves Area Under Curve (AUC) = 0.91 and accuracy rate over 86%. The result of the LCS is compared with other traditional machine-learning algorithms (e.g., Radial-Basis Function Network (RBF Network)) that are normally used in classification tasks. The study presents user-independent results which indicate that the horizontal visual stimulations contribute more to the emotion elicitation than the vertical visual stimulation.en_US
dc.language.isoen_USen_US
dc.titleApplying LCS to Affective Image Classification in Spatial-Frequency Domainen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC)en_US
dc.citation.spage1690en_US
dc.citation.epage1697en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department友訊交大聯合研發中心zh_TW
dc.contributor.department生醫電子轉譯研究中心zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentD Link NCTU Joint Res Ctren_US
dc.contributor.departmentBiomedical Electronics Translational Research Centeren_US
dc.identifier.wosnumberWOS:000356684602049en_US
dc.citation.woscount0en_US
顯示於類別:會議論文