完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Ling-Huaen_US
dc.contributor.authorWu, Jwo-Yuhen_US
dc.date.accessioned2015-12-02T03:00:56Z-
dc.date.available2015-12-02T03:00:56Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-1-4799-1481-4en_US
dc.identifier.issn1551-2282en_US
dc.identifier.urihttp://hdl.handle.net/11536/128565-
dc.description.abstractSubspace pursuit (SP) is a well-known greedy algorithm capable of reconstructing a sparse signal vector from a set of incomplete measurements. In this paper, by exploiting an approximate orthogonality condition characterized in terms of the achievable angles between two compressed orthogonal sparse vectors, we show that perfect signal recovery in the noiseless case, as well as stable signal recovery in the noisy case, is guaranteed if the sensing matrix satisfies RIP of order 3K with RIC delta(3K) <= 0.2412. Our work improves the best-known existing results, namely, delta(3K) < 0.165 for the noiseless case [3] and delta(3K) < 0.139 when noise is present [4]. In addition, for the noisy case we derive a reconstruction error upper bound, which is shown to be smaller as compared to the bound reported in [4].en_US
dc.language.isoen_USen_US
dc.subjectCompressive sensingen_US
dc.subjectrestricted isometry property (RIP)en_US
dc.subjectrestricted isometry constant (RIC)en_US
dc.subjectsubspace pursuiten_US
dc.titleAn Improved RIP-Based Performance Guarantee for Sparse Signal Reconstruction via Subspace Pursuiten_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM)en_US
dc.citation.spage405en_US
dc.citation.epage408en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000360273100102en_US
dc.citation.woscount0en_US
顯示於類別:會議論文