完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, Hsin-Chiaen_US
dc.contributor.authorWang, Z. H.en_US
dc.contributor.authorWang, W. J.en_US
dc.contributor.authorPao, Hsiao-Tienen_US
dc.date.accessioned2015-12-02T03:00:59Z-
dc.date.available2015-12-02T03:00:59Z-
dc.date.issued2015-01-01en_US
dc.identifier.isbn978-3-319-19258-1; 978-3-319-19257-4en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-19258-1_20en_US
dc.identifier.urihttp://hdl.handle.net/11536/128650-
dc.description.abstractThis paper proposes mixture Gaussian neural networks (MGNN) to learn visual features from user specified query image objects or regions for relevance image retrieval. Instead of segmenting query image regions from sample images, relevance feedback feature learning is performed by the proposed MGNN to extract query visual features. After feature learning, the MGNN can be used to measure the appearance difference between the query features and images for image retrieval. The proposed methods were tested on COREL image gallery and the WWW image collections, and testing results were compared with currently leading approaches. From the experimental results, that the extracted and learned query visual features by MGNN can be very close to users\' mind and/or desire, and the closeness is somewhat related to the number of feature leaning iterations. Since any dimensional data can be approximated by mixture Gaussian distributions, thus using MGNN to query and to retrieve similar and/or relevance high dimensional data or images will be a new area of research for future works.en_US
dc.language.isoen_USen_US
dc.subjectContent-based image retrievalen_US
dc.subjectVisual keywordsen_US
dc.subjectMixture gaussian distributionen_US
dc.subjectReinforced and anti-reinforced learningen_US
dc.subjectDecision-based neural networken_US
dc.titleInteractive Relevance Visual Learning for Image Retrievalen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-19258-1_20en_US
dc.identifier.journalADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I (IWANN 2015)en_US
dc.citation.volume9094en_US
dc.citation.spage227en_US
dc.citation.epage240en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000363763800020en_US
dc.citation.woscount0en_US
顯示於類別:會議論文