Full metadata record
DC FieldValueLanguage
dc.contributor.authorDu, BSen_US
dc.contributor.authorLi, MCen_US
dc.contributor.authorMalkin, MIen_US
dc.date.accessioned2014-12-08T15:17:44Z-
dc.date.available2014-12-08T15:17:44Z-
dc.date.issued2006en_US
dc.identifier.issn1560-3547en_US
dc.identifier.urihttp://hdl.handle.net/11536/12875-
dc.identifier.urihttp://dx.doi.org/10.1111/j.1365-2052.2006.01427.xen_US
dc.description.abstractIn this paper, we study the family of Arneodo-Coullet-Tresser maps F(x, y, z) = (ax - b(y - z), bx + a(y - z), cx - dx(k) + ez) where a, b, c, d, e are real parameters with bd not equal 0 and k > 1 is an integer. We find regions of parameters near anti-integrable limits and near singularities for which there exist hyperbolic invariant sets such that the restriction of F to these sets is conjugate to the full shift on two or three symbols.en_US
dc.language.isoen_USen_US
dc.subjecttopological horseshoeen_US
dc.subjectfull shiften_US
dc.subjectpolynomial mapsen_US
dc.subjectgeneralized Henon mapsen_US
dc.subjectnonwandering seten_US
dc.subjectinverse limiten_US
dc.subjecttopological entropyen_US
dc.titleTopological horseshoes for Arneodo-Coullet-Tresser mapsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1111/j.1365-2052.2006.01427.xen_US
dc.identifier.journalREGULAR & CHAOTIC DYNAMICSen_US
dc.citation.volume11en_US
dc.citation.issue2en_US
dc.citation.spage181en_US
dc.citation.epage190en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000238359800005-
Appears in Collections:Conferences Paper