完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, WCen_US
dc.contributor.authorLiu, YXen_US
dc.date.accessioned2014-12-08T15:17:49Z-
dc.date.available2014-12-08T15:17:49Z-
dc.date.issued2006en_US
dc.identifier.isbn3-540-33834-9en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/12910-
dc.description.abstractWe present a dynamic near-regular texture (NRT) tracking algorithm nested in a lattice-based Markov-Random-Field (MRF) model of a 3D spatiotemporal space. One basic observation used in our work is that the lattice structure of a dynamic NRT remains invariant despite its drastic geometry or appearance variations. On the other hand, dynamic NRT imposes special computational challenges to the state of the art tracking algorithms: including highly ambiguous correspondences, occlusions, and drastic illumination and appearance variations. Our tracking algorithm takes advantage of the topological invariant property of the dynamic NRT by combining a global lattice structure that characterizes the topological constraint among multiple textons and an image observation model that handles local geometry and appearance variations. Without any assumptions on the types of motion, camera model or lighting conditions, our tracking algorithm can effectively capture the varying underlying lattice structure of a dynamic NRT in different real world examples, including moving cloth, underwater patterns and marching crowd.en_US
dc.language.isoen_USen_US
dc.titleTracking dynamic near-regular texture under occlusion and rapid movementsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalCOMPUTER VISION - ECCV 2006, PT 2, PROCEEDINGSen_US
dc.citation.volume3952en_US
dc.citation.spage44en_US
dc.citation.epage55en_US
dc.contributor.department交大工研院聯合研發中心zh_TW
dc.contributor.departmentNCTU/ITRI Joint Research Centeren_US
dc.identifier.wosnumberWOS:000237555200004-
顯示於類別:會議論文