Full metadata record
DC FieldValueLanguage
dc.contributor.authorHo, SYen_US
dc.contributor.authorHsieh, CHen_US
dc.contributor.authorChen, KWen_US
dc.contributor.authorHuang, HLen_US
dc.contributor.authorChen, HMen_US
dc.contributor.authorHo, SJen_US
dc.date.accessioned2014-12-08T15:17:50Z-
dc.date.available2014-12-08T15:17:50Z-
dc.date.issued2006en_US
dc.identifier.isbn3-540-33206-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/12914-
dc.description.abstractIn this paper, we propose a novel scoring method for tumor prediction using an evolutionary fuzzy classifier which can provide accurate and interpretable information. The merits of the proposed method are threefold. 1) The score ranged in [0, 100] can further illustrate the degree of tumor status in contrast to the conventional tumor classifier. 2) The derived score system can be used as a tumor classifier using a system-suggested or human-specified threshold value. 3) The derived classifier with a compact fuzzy rule base can. generate an interpretable and accurate prediction result. The effectiveness of the proposed method is evaluated and compared using two well-known datasets from microarray data and an existing tumor classifier. It is shown by computer simulation that the proposed scoring method is effective using ROC curves of classification.en_US
dc.language.isoen_USen_US
dc.titleScoring method for tumor prediction from microarray data using an evolutionary fuzzy classifieren_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGSen_US
dc.citation.volume3918en_US
dc.citation.spage520en_US
dc.citation.epage529en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000237249600061-
Appears in Collections:Conferences Paper