Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWang, Kuo-Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2016-03-28T00:04:06Z-
dc.date.available2016-03-28T00:04:06Z-
dc.date.issued2016-01-02en_US
dc.identifier.issn0308-1087en_US
dc.identifier.urihttp://dx.doi.org/10.1080/03081087.2014.1003530en_US
dc.identifier.urihttp://hdl.handle.net/11536/129326-
dc.description.abstractLet A be an n-by-n partial isometry whose numerical range W(A) is a circular disc with centre c and radius r. In this paper, we are concerned with the possible values of c and r. We show that c must be 0 if n is at most 4 and conjecture that the same is true for the general n. As for the radius, we show that if W(A) = {z is an element of C : vertical bar z vertical bar <= r}, then the set of all possible values of r is {0, cos(pi/(n + 1))}boolean OR [cos(pi/3), cos(pi/n)]. Indeed, it is shown more precisely that for dim ker A = k, 1 <= k <= n, the possible values of r are those in the interval [cos(pi/inverted right perpendicularn/kinverted left perpendicular + 1)), cos(pi/(n - k + 2))]. In the proof process, we also characterize n-by-n partial isometries which are (unitarily) irreducible. The paper is concluded with a question on the rotational invariance of nilpotent partial isometries with circular numerical ranges centred at the origin.en_US
dc.language.isoen_USen_US
dc.subjectnumerical rangeen_US
dc.subjectpartial isometryen_US
dc.subjectirreducible matrixen_US
dc.subjectnilpotent matrixen_US
dc.subjectrotationally invariant matrixen_US
dc.subject15A60en_US
dc.subject47A12en_US
dc.titleCircular numerical ranges of partial isometriesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2014.1003530en_US
dc.identifier.journalLINEAR & MULTILINEAR ALGEBRAen_US
dc.citation.volume64en_US
dc.citation.spage14en_US
dc.citation.epage35en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000366388400003en_US
dc.citation.woscount0en_US
Appears in Collections:Articles