完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Chang-Hungen_US
dc.contributor.authorChih, Yu-Tingen_US
dc.contributor.authorWong, Wing Hungen_US
dc.contributor.authorLee, Chen-Yien_US
dc.date.accessioned2016-03-28T00:04:11Z-
dc.date.available2016-03-28T00:04:11Z-
dc.date.issued2015-11-01en_US
dc.identifier.issn1549-7747en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSII.2015.2456531en_US
dc.identifier.urihttp://hdl.handle.net/11536/129390-
dc.description.abstractA hardware-efficient sigmoid function calculator with adjustable precision for neural network and deep-learning applications is proposed in this brief. By adopting the bit-plane format of the input and output values, the computational latency of the processing time can be dynamically reduced according to the user configuration. To reduce the hardware cost, the coefficients used to calculate the sigmoid value can be shared for multiple calculators without any structural hazard. In addition, the restricted constraint is applied in the coefficients\' training stage to further simplify the computation in the calculation stage with a negligible quality loss. A test module is designed for the proposal and operated at 300 MHz to achieve 75 million sigmoid calculations per second. Implemented in 90-nm CMOS technology, the core of the calculator costs 1663 gates, and a 1-kb globally shared memory is used to store the coefficients.en_US
dc.language.isoen_USen_US
dc.subjectAdjustable precisionen_US
dc.subjectdeep learningen_US
dc.subjecthardware efficienten_US
dc.subjectneural networken_US
dc.subjectsigmoid functionen_US
dc.titleA Hardware-Efficient Sigmoid Function With Adjustable Precision for a Neural Network Systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSII.2015.2456531en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFSen_US
dc.citation.volume62en_US
dc.citation.issue11en_US
dc.citation.spage1073en_US
dc.citation.epage1077en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000365988500013en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文