完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, Chien-Pinen_US
dc.contributor.authorKang, Jin-Suen_US
dc.contributor.authorWitek, Henryk A.en_US
dc.date.accessioned2016-03-28T00:04:17Z-
dc.date.available2016-03-28T00:04:17Z-
dc.date.issued2016-01-10en_US
dc.identifier.issn0166-218Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.dam.2015.06.020en_US
dc.identifier.urihttp://hdl.handle.net/11536/129494-
dc.description.abstractWe show that the Zhang-Zhang (ZZ) polynomial of a benzenoid obtained by fusing a parallelogram M(m, n) with an arbitrary benzenoid structure ABC can be simply computed as a product of the ZZ polynomials of both fragments. It seems possible to extend this important result also to cases where both fused structures are arbitrary Kekulean benzenoids. Formal proofs of explicit forms of the ZZ polynomials for prolate rectangles Pr(m, n) and generalized prolate rectangles Pr ([m(1), m(2), ..., m(n)], n) follow as a straightforward application of the general theory, giving ZZ (Pr (m, n), x) = (1 + (1 x) . m)(n) and ZZ(Pr([m(1), m(2), ..., m(n)), n), x) = Pi(n)(k=1)(1 + (1 + x) . m(k)). (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPerfect matchingen_US
dc.subjectClar coveren_US
dc.subjectClar structureen_US
dc.subjectZhang-Zhang polynomialen_US
dc.titleClosed-form formulas for the Zhang-Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dam.2015.06.020en_US
dc.identifier.journalDISCRETE APPLIED MATHEMATICSen_US
dc.citation.volume198en_US
dc.citation.spage101en_US
dc.citation.epage108en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.department經營管理研究所zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.contributor.departmentInstitute of Business and Managementen_US
dc.identifier.wosnumberWOS:000366786000008en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文