Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Ming-Chiaen_US
dc.contributor.authorLyu, Ming-Jieaen_US
dc.date.accessioned2016-03-28T00:04:17Z-
dc.date.available2016-03-28T00:04:17Z-
dc.date.issued2016-01-02en_US
dc.identifier.issn1468-9367en_US
dc.identifier.urihttp://dx.doi.org/10.1080/14689367.2015.1020286en_US
dc.identifier.urihttp://hdl.handle.net/11536/129498-
dc.description.abstractIn this paper, we study stability of non-autonomous discrete dynamical systems. For a two-sided non-autonomous systems with covering relations determined by a transition matrix A, we show that any small C-0 perturbed system has a sequence of compact invariant sets restricted to which the system is topologically semi-conjugate to sigma(A), the two-sided subshift of finite type induced by A. Together with Lyapunov condition of good rate, the semi-conjugacy will become conjugacy. Moreover, if the Lyapunov condition is strict and has perfect rate, then any small C-1 perturbed systems is topological conjugate to sigma(A). We also study topological chaos of one-sided systems and systems with limit functions. Lack of hyperbolicity and the time dependence of the rate prevent us from applying classical hyperbolic results or earlier works for autonomous systems: cone condition and Lyapunov function. Two examples are provided to demonstrate the existence of a non-trivial, non-hyperbolic invariant and essential of controlling rate.en_US
dc.language.isoen_USen_US
dc.subjectnon-autonomous systemsen_US
dc.subjecttopological conjugacyen_US
dc.subjectcovering relationsen_US
dc.subjectLyapunov conditionen_US
dc.subjectstabilityen_US
dc.titleCovering relations and Lyapunov condition for topological conjugacyen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/14689367.2015.1020286en_US
dc.identifier.journalDYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNALen_US
dc.citation.volume31en_US
dc.citation.spage60en_US
dc.citation.epage78en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000366685600003en_US
dc.citation.woscount0en_US
Appears in Collections:Articles