完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorYang, Po-Kaien_US
dc.date.accessioned2016-03-28T00:04:18Z-
dc.date.available2016-03-28T00:04:18Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn2329-9290en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TASLP.2015.2502141en_US
dc.identifier.urihttp://hdl.handle.net/11536/129513-
dc.description.abstractThis paper presents a new Bayesian nonnegative matrix factorization (NMF) for monaural source separation. Using this approach, the reconstruction error based on NMF is represented by a Poisson distribution, and the NMF parameters, consisting of the basis and weight matrices, are characterized by the exponential priors. A variational Bayesian inference procedure is developed to learn variational parameters and model parameters. The randomness in separation process is faithfully represented so that the system robustness to model variations in heterogeneous environments could be achieved. Importantly, the exponential prior parameters are used to impose sparseness in basis representation. The variational lower bound of log marginal likelihood is adopted as the objective to control model complexity. The dependencies of variational objective on model parameters are fully characterized in the derived closed-form solution. A clustering algorithm is performed to find the groups of bases for unsupervised source separation. The experiments on speech/music separation and singing voice separation show that the proposed Bayesian NMF (BNMF) with adaptive basis representation outperforms the NMF with fixed number of bases and the other BNMFs in terms of signal-to-distortion ratio and the global normalized source to distortion ratio.en_US
dc.language.isoen_USen_US
dc.subjectBayesian learningen_US
dc.subjectmodel complexityen_US
dc.subjectmonaural source separationen_US
dc.subjectnonnegative matrix factorizationen_US
dc.titleBayesian Factorization and Learning for Monaural Source Separationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TASLP.2015.2502141en_US
dc.identifier.journalIEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSINGen_US
dc.citation.volume24en_US
dc.citation.spage185en_US
dc.citation.epage195en_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000366837500003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文