完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Kang, Ming-Hsuan | en_US |
dc.date.accessioned | 2016-03-28T00:04:23Z | - |
dc.date.available | 2016-03-28T00:04:23Z | - |
dc.date.issued | 2016-04-01 | en_US |
dc.identifier.issn | 0022-314X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jnt.2015.09.002 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/129622 | - |
dc.description.abstract | We investigate the Riemann Hypothesis on combinatorial zeta functions associated to finite quotients of the affine building of GL(n). We prove that if the quotient complex is strongly Ramanujan then these zeta functions satisfy the Riemann Hypothesis. On the other hand, we show that the converse statement is also true provided the extra generic condition. In the end, we give an example to show that this generic condition is indeed necessary. (C) 2015 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Riemann Hypothesis | en_US |
dc.subject | Rarnanujan complexes | en_US |
dc.subject | Building | en_US |
dc.subject | GL(n) | en_US |
dc.subject | Zeta functions | en_US |
dc.title | Riemann Hypothesis and strongly Ramanujan complexes from GL(n) | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jnt.2015.09.002 | en_US |
dc.identifier.journal | JOURNAL OF NUMBER THEORY | en_US |
dc.citation.volume | 161 | en_US |
dc.citation.spage | 281 | en_US |
dc.citation.epage | 297 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000368318800014 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |