Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Po-Juien_US
dc.contributor.authorChang, Shu-Weien_US
dc.date.accessioned2016-03-28T00:04:23Z-
dc.date.available2016-03-28T00:04:23Z-
dc.date.issued2016-03-01en_US
dc.identifier.issn1077-260Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/JSTQE.2015.2497333en_US
dc.identifier.urihttp://hdl.handle.net/11536/129629-
dc.description.abstractWe present an iterative scheme to obtain guided Bloch modes in lossy and dispersive photonic crystals. The formulation is based on the concept of sources and transforms the quadratic generalized eigenvalue problem of modes into simpler eigenvalue counterpart for iterations. This feature makes it particularly useful in computations with large matrix sizes. Fewer memories and less computation time than those of conventional methods are required in these cases. The robustness of iterations is rooted in the reciprocity theorem for periodic Bloch parts. Through repeated estimations of propagation constants, Bloch modes of periodic structures converge quickly. Using this method, we take sinusoidal metal gratings as examples and demonstrate advantages of the scheme.en_US
dc.language.isoen_USen_US
dc.subjectEigenvalue problemen_US
dc.subjectiterative methoden_US
dc.subjectquadratic generalized eigenvalue problemen_US
dc.subjectphotonic crystalen_US
dc.titleEfficient Photonic-Crystal Mode Solver: Eigenvalue Rather Than Generalized Eigenvalue Approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSTQE.2015.2497333en_US
dc.identifier.journalIEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICSen_US
dc.citation.volume22en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000368354000001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles