完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Y. H.en_US
dc.contributor.authorRaghunath, P.en_US
dc.contributor.authorLin, M. C.en_US
dc.date.accessioned2016-03-28T00:04:24Z-
dc.date.available2016-03-28T00:04:24Z-
dc.date.issued2016-01-30en_US
dc.identifier.issn0169-4332en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.apsusc.2015.11.109en_US
dc.identifier.urihttp://hdl.handle.net/11536/129652-
dc.description.abstractThe adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(111) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiH species on the W(111) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x= 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within +/- 1 kcal/mol. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleA computational study on the energetics and mechanisms for the dissociative adsorption of SiHx(x=1-4) on W(111) surfaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apsusc.2015.11.109en_US
dc.identifier.journalAPPLIED SURFACE SCIENCEen_US
dc.citation.volume362en_US
dc.citation.spage551en_US
dc.citation.epage556en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000368657900075en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文