Title: Optimal Edge Congestion of Exchanged Hypercubes
Authors: Tsai, Tsung-Han
Chen, Y-Chuang
Tan, Jimmy J. M.
資訊工程學系
Department of Computer Science
Keywords: Hypercube;exchanged hypercube;interconnection network;shortest path routing;edge congestion
Issue Date: 1-Jan-2016
Abstract: Topological properties have become a popular and important area of focus for studies that analyze interconnections between networks. The hypercube is one of the most widely discussed topological structures for interconnections between networks and is usually covered in introductions to the basic principles and methods for network design. The exchanged hypercube EH(s, t) is a new variant of the hypercube that has slightly more than half as many edges and retains several valuable and desirable properties of the hypercube. In this paper, we propose an approach for shortest path routing algorithms from the source vertex to the destination vertex in EH(s, t) with time complexity O(n), where n - s + t + 1 and 1 <= s <= t. We focus on edge congestion, which is an important indicator for cost analyses and performance measurements in interconnection networks. Based on our shortest path routing algorithm, we show that the edge congestion of EH(s, t) is 3.2(s+t+1) - 2(s+1) - 2(t+1). In addition, we prove that our shortest path routing algorithm is an optimal routing strategy with respect to the edge congestion of EH(s, t).
URI: http://dx.doi.org/10.1109/TPDS.2014.2387284
http://hdl.handle.net/11536/129683
ISSN: 1045-9219
DOI: 10.1109/TPDS.2014.2387284
Journal: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Volume: 27
Begin Page: 250
End Page: 262
Appears in Collections:Articles