完整後設資料紀錄
DC 欄位語言
dc.contributor.authorZida, Souleymaneen_US
dc.contributor.authorFournier-Viger, Philippeen_US
dc.contributor.authorLin, Jerry Chun-Weien_US
dc.contributor.authorWu, Cheng-Weien_US
dc.contributor.authorTseng, Vincent S.en_US
dc.date.accessioned2016-03-28T00:05:42Z-
dc.date.available2016-03-28T00:05:42Z-
dc.date.issued2015-01-01en_US
dc.identifier.isbn978-3-319-27060-9; 978-3-319-27059-3en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-27060-9_44en_US
dc.identifier.urihttp://hdl.handle.net/11536/129779-
dc.description.abstractHigh-utility itemset mining (HUIM) is an important data mining task with wide applications. In this paper, we propose a novel algorithm named EFIM (EFficient high-utility Itemset Mining), which introduces several new ideas to more efficiently discovers high-utility itemsets both in terms of execution time and memory. EFIM relies on two upper-bounds named sub-tree utility and local utility to more effectively prune the search space. It also introduces a novel array-based utility counting technique named Fast Utility Counting to calculate these upper-bounds in linear time and space. Moreover, to reduce the cost of database scans, EFIM proposes efficient database projection and transaction merging techniques. An extensive experimental study on various datasets shows that EFIM is in general two to three orders of magnitude faster and consumes up to eight times less memory than the state-of-art algorithms d 2 HUP, HUI-Miner, HUP-Miner, FHM and UP-Growth+.en_US
dc.language.isoen_USen_US
dc.subjectHigh-utility miningen_US
dc.subjectItemset miningen_US
dc.subjectPattern miningen_US
dc.titleEFIM: A Highly Efficient Algorithm for High-Utility Itemset Miningen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-27060-9_44en_US
dc.identifier.journalADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT Ien_US
dc.citation.volume9413en_US
dc.citation.spage530en_US
dc.citation.epage546en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000367681700044en_US
dc.citation.woscount0en_US
顯示於類別:會議論文