完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Yu-Tingen_US
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorWu, Shang-Linen_US
dc.contributor.authorHsieh, Tsung-Yuen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2016-03-28T00:05:45Z-
dc.date.available2016-03-28T00:05:45Z-
dc.date.issued2015-01-01en_US
dc.identifier.isbn978-1-4799-8696-5en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/SMC.2015.561en_US
dc.identifier.urihttp://hdl.handle.net/11536/129828-
dc.description.abstractThis study proposes an EEG-based forecasting system based on a functional-link recurrent self-evolving fuzzy neural network (FL-RSEFNN) for assessing mental fatigue during a highway driving task. Drivers\' cognitive states significantly affect driving safety, especially for fatigue or drowsy driving which is one of common factors to endanger individuals and the public safety. In this study, a FL-RSEFNN employs an on-line gradient descent (GD) learning rule to address the EEG regression problem in brain dynamics for estimation of driving fatigue. We analyze brain dynamics in a car driving task, which is constructed in a simulated virtual reality (VR) environment. The EEG-based forecasting system is evaluated using the generalized cross-subject approach, and the results indicate that the FL-RSEFNN is superior to state-of-the-art models regardless of the use of recurrent or non-recurrent structures.en_US
dc.language.isoen_USen_US
dc.subjectElectroencephalography (EEG)en_US
dc.subjectfunctional-link recurrent self-evolving fuzzy neural network (FL-RSEFNN)en_US
dc.subjectbrain-computer interface (BCI)en_US
dc.subjectdriving safetyen_US
dc.titleAssessment of Mental Fatigue: An EEG-based Forecasting System for Driving Safetyen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/SMC.2015.561en_US
dc.identifier.journal2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMSen_US
dc.citation.spage3233en_US
dc.citation.epage3238en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000368940203055en_US
dc.citation.woscount0en_US
顯示於類別:會議論文