標題: | 染料敏化太陽能電池元件的關鍵材料開發及其相關基礎研究 Development of Key Materials and Related Fundamental Researches for Dye-Sensitized Solar Cells |
作者: | 刁維光 DIAU ERIC WEI-GUANG 國立交通大學應用化學系(所) |
公開日期: | 2015 |
摘要: | 我們提出一個三年期計畫「染料敏化太陽能電池元件的關鍵材料開發及其相關基礎研究」,其目的在開發出適用於高效能染料敏化太陽能電池之新穎功能化材料,期使電池元件效能達到最佳化為商業化目標。本計畫的架構由六個部分所組成,其中關鍵材料的開發包括了四個主軸:(一)「新穎高效能染料的設計與合成」,其重點在設計與合成苯咪挫配位基新穎釕金屬錯合物及其衍生物為主的光敏染料,以及紫質與有機染料的共吸附元件最佳化測試,並配合電子傳輸機制的研究以尋找較佳吸光效率的染料而使元件的整體效能有效地提升;(二)「新穎一維奈米結構電極的開發」,置重點於製備二氧化鈦奈米棒結構電極及有序二氧化鈦奈米管結構電極,目的在為電子提供高效率且有方向性的傳輸途徑之概念,導入具有方向性的一維結構作為工作電極材料,以取代傳統TiO2奈米粒之半導體電子傳輸層;(三)「新型電解質的設計與開發」,重點在改進傳統液態電解液易揮發及漏液等不利未來產品化之缺點,並開發出接近液態電解質光電轉化效率之熱穩定佳、長期穩定性高的膠態或固態電解質;(四)「高效能對電極材料的開發」,針對陰極上修飾觸媒層為研究重點,除製備具有高穩定性以及高催化效能的鉑電極,更研發簡易的低溫製程方式,提高其對基材的適用性,期能應用於軟性DSSC元件中。最後兩個部分的研究分別針對上述材料的開發應用於DSSC元件的整體效能最佳化測試,並進行光激發後電子轉移機制的基礎研究,對其在電池效率的影響上做出結論,並希望能以此為基礎,進而設計出較現有染料、電解質或奈米結構更為優越的材料,而對元件設計做出貢獻。 This proposal contains six interconnected parts with the purpose of developments of novel functional materials and device optimization for Dye-Sensitized Solar Cells (DSSC) for future commercialization. The first four parts of the proposal aim at development and fabrication of new materials and the last two parts focus on characterization and optimization of device performance and understanding the electron transport mechanism of the system using various advanced techniques. The first four major sections contain the following subjects: (1) design and synthesis of novel ruthenium complexes with benzimidazole ligands in order to obtain better light harvesting efficiency for improvement of DSSC performance, together with design and characterization of co-sensitization systems based on porphyrins and organic dyes; (2) design and preparation of novel one-dimensional nanostructures such as anodic titanium oxide (ATO) nanotube (NT) arrays and single crystalline TiO2 nanorods (NR) synthesized via various sol/hydrothermal methods because of their superior charge-collection performance; (3) design and synthesis of new series of gel-type or pseudo-solid-state electrolytes to solve the problems of leakage and volatilization of liquid electrolytes and to minimize the loss of electrolytes for enhanced efficiency and durability of the devices; (4) design and fabricate of highly efficient platinum counter electrode for modification of cathode catalyst layer at low-temperature condition with high stability and high catalytic performance for flexible DSSC applications. To understand the key factors controlling the performance of a DSSC, in the last two parts of the proposal we propose the strategy to optimize the device performance and to perform time-resolved (transient photoelectric measurements) and frequency-domain (impedance spectroscopy) investigations for the novel systems proposed herein using the advanced techniques established in this laboratory. After understanding of the fundamental processes in the high-performance devices, we will be able to design more novel functional materials and to develop new technologies to boost up the performance for the new-generation solar cells. |
官方說明文件#: | NSC102-2113-M009-020-MY3 |
URI: | http://hdl.handle.net/11536/129974 https://www.grb.gov.tw/search/planDetail?id=11271561&docId=455307 |
Appears in Collections: | Research Plans |