Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Long, Ling | en_US |
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2014-12-08T15:18:01Z | - |
dc.date.available | 2014-12-08T15:18:01Z | - |
dc.date.issued | 2005-12-01 | en_US |
dc.identifier.issn | 1793-0421 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1142/S1793042105000364 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/13027 | - |
dc.description.abstract | We give a short proof of Milne's formulas for sums of 4n(2) and 4n(2) + 4n integer squares using the theory of modular forms. Other identities of Milne are also discussed. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Eisenstein series | en_US |
dc.subject | Jacobi theta functions | en_US |
dc.subject | modular forms | en_US |
dc.subject | sum of integer squares | en_US |
dc.subject | Hankel determinant evaluation | en_US |
dc.title | A SHORT PROOF OF MILNE'S FORMULAS FOR SUMS OF INTEGER SQUARES | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1142/S1793042105000364 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL OF NUMBER THEORY | en_US |
dc.citation.volume | 1 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 533 | en_US |
dc.citation.epage | 551 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000207114000005 | - |
dc.citation.woscount | 6 | - |
Appears in Collections: | Articles |