Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, FL | en_US |
dc.contributor.author | Fu, HL | en_US |
dc.contributor.author | Wang, YJ | en_US |
dc.contributor.author | Zhou, JQ | en_US |
dc.date.accessioned | 2014-12-08T15:18:01Z | - |
dc.date.available | 2014-12-08T15:18:01Z | - |
dc.date.issued | 2005-12-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/13031 | - |
dc.description.abstract | A nonincreasing sequence of positive integers < m(1), m(2),(...), m(k)> is said to be n-realizable if the set I-n = {1, 2,(...), n} can be partitioned into k mutually disjoint subsets S-1, S-2,(...), S-k such that Sigma(x is an element of Si) x = m(i) for each 1. <= i <= k. In this paper, we will prove. that a nonincreasing sequence of positive integers < m(1), m(2),(...),m(k)> is n-realizable under the. conditions that Sigma(i=1)(k) m(i) = ((n+1)(2)) and m(k-1) >= n. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | partition | en_US |
dc.subject | integer partition | en_US |
dc.subject | graph decomposition | en_US |
dc.title | Partition of a set of integers into subsets, with prescribed sums | en_US |
dc.type | Article | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 9 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 629 | en_US |
dc.citation.epage | 638 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000234382000006 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |