完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, FLen_US
dc.contributor.authorFu, HLen_US
dc.contributor.authorWang, YJen_US
dc.contributor.authorZhou, JQen_US
dc.date.accessioned2014-12-08T15:18:01Z-
dc.date.available2014-12-08T15:18:01Z-
dc.date.issued2005-12-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/13031-
dc.description.abstractA nonincreasing sequence of positive integers < m(1), m(2),(...), m(k)> is said to be n-realizable if the set I-n = {1, 2,(...), n} can be partitioned into k mutually disjoint subsets S-1, S-2,(...), S-k such that Sigma(x is an element of Si) x = m(i) for each 1. <= i <= k. In this paper, we will prove. that a nonincreasing sequence of positive integers < m(1), m(2),(...),m(k)> is n-realizable under the. conditions that Sigma(i=1)(k) m(i) = ((n+1)(2)) and m(k-1) >= n.en_US
dc.language.isoen_USen_US
dc.subjectpartitionen_US
dc.subjectinteger partitionen_US
dc.subjectgraph decompositionen_US
dc.titlePartition of a set of integers into subsets, with prescribed sumsen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume9en_US
dc.citation.issue4en_US
dc.citation.spage629en_US
dc.citation.epage638en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000234382000006-
dc.citation.woscount2-
顯示於類別:期刊論文