Full metadata record
DC FieldValueLanguage
dc.contributor.author黎漢林zh_TW
dc.contributor.authorLI HAN-LINen_US
dc.date.accessioned2016-03-28T08:17:49Z-
dc.date.available2016-03-28T08:17:49Z-
dc.date.issued2015en_US
dc.identifier.govdocMOST103-2221-E009-082-MY2zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/130459-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=11262355&docId=452868en_US
dc.description.abstract非線性整數規劃問題普遍存在於許多工業工程與管理中。使用傳統方法線性化一整數函 數 f ( x),x {1,...,m}, 需要使用m個 0-1 變數。本研究擬提出一組合 0-1 法線性化 f ( x),僅需 2 log m個零一變數及額外 4 m   個連續變數。本研究可利用此法求解相關非 線性規劃問題,其中函數可表示為 f ( x) , xy 或 xyz ( x, y, z  )。初步的數值實驗結 果顯示所提出的組合0-1 法比傳統方法求解時間更為快速且保證找到最佳解,特別是問 題中的m值越大效果愈顯著。zh_TW
dc.description.abstractUsing current methods to linearize a nonlinear integer function f ( x) , x {1,...,m}, needs to use m binary variables. This study proposes a hybrid binary method to linearize f ( x) which needs only 2 log m binary variables and additional 4 m   continuous variables. We apply this method to solve the nonlinear integer programs containing f ( x) , xy or xyz where x, y, z  . Numerical experiments demonstrate that the proposed method is much faster than the current methods for finding the exact solution, especially for large m value.en_US
dc.description.sponsorship科技部zh_TW
dc.language.isozh_TWen_US
dc.subject組合零一變數法zh_TW
dc.subject非線性規劃zh_TW
dc.subjectHybrid binary methoden_US
dc.subjectNonlinear integer programen_US
dc.title以組合0-1法求解非線性整數規劃問題zh_TW
dc.titleA Hybrid Binary Method for Solving Nonlinear Integer Programsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學資訊管理與財務金融學系zh_TW
Appears in Collections:Research Plans