完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, BFen_US
dc.contributor.authorChen, YLen_US
dc.contributor.authorChiu, CCen_US
dc.date.accessioned2014-12-08T15:18:02Z-
dc.date.available2014-12-08T15:18:02Z-
dc.date.issued2005-12-01en_US
dc.identifier.issn0218-0014en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218001405004435en_US
dc.identifier.urihttp://hdl.handle.net/11536/13047-
dc.description.abstractText is commonly printed on a complex background. Segmenting text is an important part in document analysis. In the past some methods have been shown for the segmentation of texts with images. However, previous studies have not sufficiently addressed complex compound documents. This investigation presents an algorithm for the segmentation of text in various document images. The proposed segmentation algorithm applies a new multilayer segmentation method to separate the text from various compound document images, independent from the text and background overlapping or not. This method solves various problems associated with the complexity of background images. Experimental results obtained using various document images scanned from book covers, advertisements, brochures and magazines, reveal that the proposed algorithm can successfully segment Chinese and English text strings from various backgrounds, regardless of whether the texts are over a simple, slowly varying or rapidly varying background texture.en_US
dc.language.isoen_USen_US
dc.subjectcomplex compound documenten_US
dc.subjectimage segmentationen_US
dc.subjectdocument analysisen_US
dc.subjecttext extractionen_US
dc.titleMulti-layer segmentation of complex document imagesen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218001405004435en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCEen_US
dc.citation.volume19en_US
dc.citation.issue8en_US
dc.citation.spage997en_US
dc.citation.epage1025en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000234753600003-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000234753600003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。