Full metadata record
DC FieldValueLanguage
dc.contributor.author韋光華zh_TW
dc.contributor.authorWEI KUNG-HWAen_US
dc.date.accessioned2016-03-28T08:17:52Z-
dc.date.available2016-03-28T08:17:52Z-
dc.date.issued2015en_US
dc.identifier.govdocMOST103-2221-E009-212-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/130505-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=11277258&docId=456837en_US
dc.description.abstract高分子太陽能電池在近十年來的發展有著相當顯著的進步,此乃歸功於導電高分子、元件結構、與元件內界面工程這三方面的發展。直至目前為止,以高分子為P型,碳球為N型之異質皆面(bulk heterojunction)高分子光伏電池(單電池)最高效率為9%。但由於這些奈米碳球分佈於高分子內之形態不容易控制,況且吸光性不佳而無法做為互補吸光之材料。所以除了目前主流的高分子/富勒烯衍生物之混成大陽能電池,以高分子/無機物混成的太陽電池因其具有高電子遷移率、優良的物理和化學穩定性,使其成為熱門的研究對象。目前(i) C60-bodipy dyads (ii) CH3NH3PbX3 (iii) MoS2因其可見光吸收性佳而引起高度關注,此外本團隊過去發展出有潛力的高光電轉換效率共軛高分子,以thieno[3,4- c ]pyrrole-4,6-dione}(TPD)和benzooxadiazole (BO) 為共軛高分子(D-A type)中的acceptor,合成出PDTTTPD、PBTTPD和PBDTTBO三支高分子。預計第一年以這三支高分子混和C60-bodipy dyads做為主動層,第二年將主動層改為高分子混和CH3NH3PbX3 (X = Cl, Br or I),第三年的部分則考慮將高分子與二硫化鉬(MoS2)混合做為主動層。目前本實驗室在元件製作上已有相當好的低水、氧環境,元件製作過程可不受大氣中雜質以及水、氧的影響。因此,我們有能力執行此三年期的計畫。在計畫目標上,目的在將本實驗室已開發出的高效率共軛高分子分別與碳60-bodipy dyads、CH3NH3PbI3 或是MoS2 整合於一太陽能元件中,藉以結合高分子與無機物雙方優點來提升元件效率。zh_TW
dc.description.abstractOrganic polymer photovoltaics (OPVs) has progressed quite significantly in the last ten years due to the improvement on conducting polymer, device structure, and interfacial engineering. At present, the highest efficiency of polymer-based OPV has reached near 11%. In the past, we already successfully developed three polymers with high power conversion efficiency, PDTTTPD, PBTTPD, and PBDTTBO, which contains thieno[3,4-c]pyrrole-4,6-dione}(TPD) or benzooxadiazole (BO) moiety. Besides the intensively studied polymer-fullerene derivative hybrid solar cells, organic–inorganic hybrid solar cell devices represent promising advantage of the relatively high electron mobility, good physical and chemical stability. Three materials, C60 bodipy dyads, CH3NH3PbX3 and MoS2, attract many attentions due to the high absorption in spectral range of visible light. In the first year, the active layer is comprised of the blended solution of C60-bodipy dyads with TPD or BO based polymer. In the second year, C60-bodipy dyads is replaced by CH3NH3PbI3 as the acceptor in active layer. In the third year, Molybdenum disulfide (MoS2) is blended with a polymer as performing the active layer in a solar cell. In this three-year proposal, the goal is to successfully achieve device structures by combine C60 bodipy dyads, CH3NH3PbX3, or MoS2 with our designed conjugated polymer and improve the solar cells efficiencies.en_US
dc.description.sponsorship科技部zh_TW
dc.language.isozh_TWen_US
dc.subject共軛高分子zh_TW
dc.subject無機奈米複合材料zh_TW
dc.subject異質接面太陽能電池zh_TW
dc.subject富勒烯zh_TW
dc.subject溶劑添加劑zh_TW
dc.subjectonjugated polymeren_US
dc.subjectinorganic nano-composite materialsen_US
dc.subjectbulk heterojunction solar cellen_US
dc.subjectfullereneen_US
dc.subjectsolvent additiveen_US
dc.title共軛高分子/二維奈米無機複合材料之形態與光電性質研究zh_TW
dc.titleThe Morphology and Photovoltaic Properties of Conjugated Polymer/Two Dimensional Inorganic Nanocompositeen_US
dc.typePlanen_US
dc.contributor.department國立交通大學材料科學與工程學系(所)zh_TW
Appears in Collections:Research Plans