Full metadata record
DC FieldValueLanguage
dc.contributor.author李柏璁zh_TW
dc.contributor.authorLee Po-Tsungen_US
dc.date.accessioned2016-03-28T08:17:52Z-
dc.date.available2016-03-28T08:17:52Z-
dc.date.issued2015en_US
dc.identifier.govdocMOST103-2221-E009-096-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/130512-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=11277850&docId=457001en_US
dc.description.abstract電漿子光學(plasmonics)發展已經超過十年歷史,利用金屬性材料的表面電漿共振 (surface plasmon resonance)行為,可將光場侷限於次波長的奈米結構,超越光學繞射極 限,使奈米光學(nano-optics)得以實踐並蓬勃發展。此外,透過特殊結構設計可適當調 整電漿模態、共振波長、近場強度,為生化感測、粒子捕獲等應用提升更多的操作彈性 與元件性能。更進一步,將金屬性材料巧妙安排形成新穎材料(metamaterial),可衍伸出 許多令人驚豔且極具特殊功用的元件如超級透鏡(superlens)。本計畫採用金與氧化鋁鋅 (aluminum zinc oxide,AZO)兩種金屬性材料設計開發金奈米分裂圓盤(split-nanodisk)、 金奈米棒二聚物/奈米環(nanorod dimer/nanoring)及氧化鋁鋅遠場超級透鏡,並加以垂直 整合發展出具高強度、高靈敏度生物粒子捕獲與感測之電漿元件,同時亦可高解析地及 時監測、分析生物分子之細微結構與及時動態資訊,此垂直整合式新穎元件系統可望以 便捷有效率的方式來增進在醫學診斷、疾病監控與藥物研發的發展性。本計畫之執行規 劃三年:第一年我們利用模擬軟體將各個元件結構優化,並著重元件製作與材料分析; 第二年我們將針對奈米粒子捕獲與生物感測之性能以模擬與實驗來驗證,以及製作遠場 超級透鏡並討論其成像品質;最後一年,我們將各個元件加以整合實現新穎表面電漿/ 遠場超級透鏡之垂直整合元件。zh_TW
dc.description.abstractThe development of Plasmonics has been over a decade. Surface plasmon resonance of metallic materials can localize light to subwavelength nanostructures, beyond the optical diffraction limit. Hence, nano-optics can be successfully realized and is rapidly developed. The plasmon mode, resonance wavelength, and near-field strength can be designed using suitable structures. Therefore, plasmonic devices with high flexibility and performance can be applied to bio-chemical sensing and particle trapping. Furthermore, by proper arrangement of metallic materials to form metamaterials, we can design devices with impressive functions, such as superlens. In this project, two metallic materials, conventional gold (Au) and novel aluminum zinc oxide (AZO), will be utilized to realize Au split-nanodisk for highly sensitive biomolecule sensing, Au nanorod dimer/nanoring for efficient nanoparticle trapping, and AZO-based far-field superlens for high imaging resolution. Most importantly, the Au split-disk or Au rod dimer/ring nanostructure will be integrated with the AZO-based far-field superlens to form a novel plasmonic device, which is capable of monitoring and analyzing the detailed biomolecule structure and dynamic interaction with high resolution. In addition, we expect that this novel integrated plasmonic device can enhance the development of medical diagnosis, monitor of diseases, and drug discovery to be more efficiently and conveniently in the future. In the first year of this project, we will numerically optimize individual device and focus on device fabrication and material analysis. In the second year, we will investigate both numerically and experimentally the performances of bio-sensing and nanoparticle trapping using Au split-disk and rod dimer/ring nanostructures. At the same time, the imaging quality of the far-field superlens will be discussed. In the third year, we will combine the split-disk or rod dimer/ring nanostructure with the far-field superlens to demonstrate novel vertical integration of the surface plasmon device/far-field superlens.en_US
dc.description.sponsorship科技部zh_TW
dc.language.isozh_TWen_US
dc.subject電漿子光學zh_TW
dc.subject表面電漿zh_TW
dc.subject新穎材料zh_TW
dc.subject超級透鏡zh_TW
dc.subject氧化鋁鋅zh_TW
dc.subject生化感測zh_TW
dc.subject粒子捕 獲zh_TW
dc.subjectPlasmonicsen_US
dc.subjectSurface plasmonen_US
dc.subjectMetamaterialen_US
dc.subjectSuperlensen_US
dc.subjectAluminum zinc oxideen_US
dc.subjectBio-chemical sensingen_US
dc.subjectParticle trappingen_US
dc.title結合傳統金屬與新穎類金屬材料發展表面電漿之垂直整合元件進行生物粒子捕獲與感測之前瞻性研究zh_TW
dc.titleThe Combination of Conventional Metal and Novel Metal-Like Material on Developing Vertical Integrated Surface Plasmon Device for the Applications of Biomolecule Sensing and Trappingen_US
dc.typePlanen_US
dc.contributor.department國立交通大學光電工程學系(所)zh_TW
Appears in Collections:Research Plans