完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 廖奕翰 | zh_TW |
dc.contributor.author | Liau Ian | en_US |
dc.date.accessioned | 2016-03-28T08:17:53Z | - |
dc.date.available | 2016-03-28T08:17:53Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.govdoc | MOST103-2113-M009-013-MY3 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/130527 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=11270866&docId=455123 | en_US |
dc.description.abstract | 我們的團隊專門從事光子技術開發和生物醫學應用。近來應用斑馬魚於發育生物 學、人類疾病和藥物開發的研究與日俱增,基於我們長期對人類心血管疾病的關 注,我們在過去兩年開始嘗試應用斑馬魚及大鼠等模式生物探索心血管相關議題, 獲得以下成果: 1. 應用二倍頻成像於斑馬魚評估降血脂藥物的肌肉毒性 (PLoS One, 2011) 2. 開發受激拉曼散射技術應用於血管病變之化學成像 3. 結合拉曼光譜和螢光成像探討藥物抑制血管脂肪斑塊 (Anal. Chem., submitted). 4. 開發微懸臂評量測心肌細胞搏動 (Anal. Chem., 2013) 5. 開發光學技術量測斑馬魚心臟節律 (Anal. Chim. Acta, submitted) 及心室輸 出功能 (Anal. Chem., submitted) 6. 開發雷射方法誘發斑馬魚血栓及心臟損傷 7. 開發分子影像技術探討缺血再灌注 (Theranostics, submitted) 8. 建立活體影像技術研究脂肪肝及肝纖維化之血流動力學及細胞間作用 在這些基礎下,我們提出一個三年計劃, 應用跨學科研究方法結合斑馬魚等模式 生物探討心血管疾病重要議題。此計劃可歸納為三個相關子題,其主題及目的如 下。 子項目一. 結合螢光成像及拉曼光譜技術探討動脈粥狀硬化疾病斑馬魚模型以及 藥物開發應用 • 應用雷射技術開發動脈粥狀硬化和中風的斑馬魚模型 • 探討中風後血流動力學和血管調適作用 • 開發功能性靶向探針應用於活體動脈粥狀硬化病變之成像 • 開發斑馬魚應用於活體藥物篩選平台 子項目二. 建立雷射誘發心臟損傷方法探討斑馬魚心臟再生機理 • 以雷射方法建立研究心臟損傷再生的斑馬魚模型 • 發展擬動態三維成像技術測定斑馬魚心臟功能 • 研究斑馬魚心臟損傷再生後之心輸出功能 • 探討活性含氧物質及免疫細胞對心臟再生之作用 子項目三. 開發分子影像技術探討缺血再灌流 • 開發以線粒體自體螢光為基礎之新穎分子影像技術 • 應用分子影像技術研究腦缺血再灌流 • 探討缺血再灌流中復氧,血流動力學和細胞動力學的相互作用 • 研究缺血再灌流後無復流現象之機理 • 探索新的抑制缺血後再灌流損傷的方法 | zh_TW |
dc.description.abstract | Our group specializes in the development and application of photonic technology to investigate scientific problems of great biomedical significance. More recently, we noted the growing interest of using zebrafish as a model organism for the study of developmental biology, human diseases and pharmaceutical development. With respect to our long-term interest of human cardiovascular diseases, the cardiovascular system of zebrafish possesses many similar features relative to the human counterpart. The translucent nature of larvae further makes zebrafish an ideal model to investigate human cardiovascular diseases with spectroscopic and imaging means. Over the past two years, we have attempted to explore the utilization of our biophotonic approach to investigate cardiovascular diseases on zebrafish. In specific, we have (1) Applied SHG imaging to evaluate myotoxicity of anti-hyperlipidemic drugs on zebrafish in vivo (PLoS One, 2011), (2) Incorporated SRS (stimulated Raman scattering) into our multimodal multiphoton imaging system for label-free chemical imaging of vascular lipids, (3) Integrated Raman spectroscopy and confocal fluorescence imaging to investigate the pharmaceutical effects of anti-hyperlipidemic drugs on vascular fatty lesions of zebrafish in situ and in vivo (Anal. Chem., submitted), (4) Developed micro-cantilever technology to assess the contractile dynamics of self-beating cardiomyocytes (Anal. Chem., 2013), (5) Developed optical reflectometry and pseudo-dynamic 3D imaging and to determine the cardiac rhythmicity (Anal. Chim. Acta., submitted) and cardiac function (Anal. Chem., submitted) of zebrafish, (6) Invented novel laser-based methods (photochemistry and fs-laser ablation) to induce thrombosis, and to study the regeneration of heart after injuries in zebrafish, (7) Demonstrated a novel intravital molecular imaging modality to investigate ischemia and reperfusion (Theranostics, submitted), (8) Developed intravital imaging to interrogate the hemodynamic abnormalities and intercellular interaction of chronic liver diseases. Based on the exciting progress, we propose a three-year project entitled “Spectral, imaging and photochemical assessment of model animals in vivo targeting human cardiovascular diseases”. This project comprises three independent but highly correlated themes. The title and aims of each sub-project are listed below: Sub-project A. Spectro-imaging interrogation of zebrafish models of atherosclerotic diseases and application in pharmaceutical development • Establish zebrafish models of atherosclerosis and stroke with photochemical means • Investigate hemodynamics and vascular adaptation after stroke and hypoxia-reperfusion • Develop functional probe targeting the inflammatory status of vascular fatty lesions in vivo • Develop the utility of zebrafish as a whole-animal model to screen drugs with thrombolytic or anti-atherosclerotic capability Sub-project B. Mechanistic study on the regeneration of zebrafish heart after injuries induced with laser-based methods • Establish novel zebrafish models of heart injuries induced with laser-based methods • Develop pseudo-dynamic 3D imaging for precise determination of the cardiac function of zebrafish • Evaluate the regeneration and functional recovery of zebrafish heart after injuries • Explore the role of ROS and immune cells on heart regeneration Sub-project C. Intravital molecular imaging of on rat models of cerebral ischemia-reperfusion and exploration of novel intervention targeting reperfusion injury • Develop a novel modality of molecular imaging specific to mitochondrial functions • Investigate cerebral ischemia-reperfusion using rat models • Investigate the interplay among reoxygenation, hemodynamics and cellular dynamics • Elucidate the mechanism and pathophysiology of no-reflow during reperfusion after a prolonger ischemia • Explore novel interventions to suppress reperfusion injury More details about each theme can be found in the main content of the proposal. | en_US |
dc.description.sponsorship | 科技部 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.title | 應用光譜、成像及光化學方法於模式生物探索人類心血管疾病 | zh_TW |
dc.title | Spectral, Imaging and Photochemical Assessment of Model Animals in Vivo Targeting Human Cardiovascular Diseases | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 國立交通大學應用化學系(所) | zh_TW |
顯示於類別: | 研究計畫 |