Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, CCen_US
dc.contributor.authorHuang, JKen_US
dc.contributor.authorCheng, YTen_US
dc.date.accessioned2014-12-08T15:18:10Z-
dc.date.available2014-12-08T15:18:10Z-
dc.date.issued2005-11-01en_US
dc.identifier.issn1531-1309en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LMWC.2005.859019en_US
dc.identifier.urihttp://hdl.handle.net/11536/13124-
dc.description.abstractIn this letter, a closed-form integral model is presented for the rectangular micromachined spiral inductor. The Kramers-Kronig relations provide an elegant theory to describe the inductor behavior without having complicated geometric analysis. Simulation and measurement results validate that the model can provide satisfactory prediction to the inductance of on-chip freely-suspended spiral inductors. Meanwhile, unlike conventional Greenhouse-based formulations, the self-resonant frequency of inductor can be predicted using the integral model.en_US
dc.language.isoen_USen_US
dc.subjectKramers-Kronig relationsen_US
dc.subjectradio frequency integrated circuit (RFIC)en_US
dc.subjectself-resonant frequencyen_US
dc.subjectspiral inductoren_US
dc.titleA closed-form integral model of spiral inductor using the Kramers-Kronig relationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LMWC.2005.859019en_US
dc.identifier.journalIEEE MICROWAVE AND WIRELESS COMPONENTS LETTERSen_US
dc.citation.volume15en_US
dc.citation.issue11en_US
dc.citation.spage778en_US
dc.citation.epage780en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000233208200020-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000233208200020.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.